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RESEARCH MEMORANDUM

THE EFFECTS OF VARIOUS PARAMETERS INCLUDING MACH

NUMBER ON PROPELLER-BLADE FLUTTER WITH

EMPHASIS ON STALL FLUTTE]

By John E. Baker

SUMMARY

Classification Changed to
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Date

The effects of many of the parameters significant to wing flutter

were studied experimentally on several untwisted rotating models to

determine their significance with respect to stall flutter of propeller

b]ades. The parameters included torsional stiffness, section thickness

ratio, sweepback, length-chord ratio, section center-of-gravity location,

blade taper, Mach number, and fluid density. In order to check on the

effects of blade twist, one model which had spanwise twist was studied.

The blade angles of the models were generally varied from low values to

beyond the stall.

The experimental results for the flutter speed are presented in the

form of flutter-speed coefficients (V/bah)O.8L , where the quantities V

and b are the resultant velocity and semichord, respectively, taken at

0.8 blade length, and ah is the natural first-torsion circular frequency

of the blade. The minimum values of this flutter-speed coefficient were

found to be slightly greater than 1.O for subcritical Mach numbers. The

parameters that produced a significant increase of this flutter-speed

coefficient were forward movement of the section center-of-gravity

location, sweepback, increase of the section thickness ratio, and Mach

number at supercritical speeds. In order to maintain satisfactory aero-

dynamic efficiency at high speeds, however, thin blade sections are

required. The largest effects on the flutter-speed coefficient were

produced by the section center-of-gravity location and the Mach number.

The effect of Mach number was of such significance that it is possible

to present a tentative criterion for designing completely flutter-free

thin propeller blades to operate at supersonic and supercritical speeds.

This criterion is given by the design parameter _Ixo_/c)0.8 L (where the

quantity c is the sound speed of the operating medium) and the present

investigation indicates that propeller blades having values of this

parameter above 0.90 should be entirely free of flutter. It is also

UICLASSIFIEI 
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possible to consider various operating procedures for propellers not

satisfying the criterion as a means for avoiding flutter.

INTRODUCT ION

The propeller-flutter problem is an old one. Papers have been

written on the subject from World War I to the present, and some of the

significant results are summarized in reference 1. In the past, propeller

flutter has been studied primarily by trial-and-error methods on specific

propellers. Therefore, much confusion and contradictory data exist at

the present time.

In general, flutter can be avoided by making the blade sections

sufficiently thick; however, recent aerodynamic investigations have shown

that propellers for future high-speed aircraft must be thin in order to

obtain satisfactory performance. Thus, propeller flutter, which has been

considered chiefly as a nuisance in the past, now becomes a critical

design problem. The trialgand-error methods of the past have become

inadequate for the design of thin supersonic and transonic propellers.

Accordingly, a fairly camprehensive experimental study has been made to

determine the effects of various parameters on propeller flutter. The

parameters studied include torsional stiffness, section thickness ratio,

sweepback, length-chord ratio, section center-of-gravity location, blade

taper, blade twist, Mach number, and density of the operating medium.

Blade angles were generally varied from low lift to beyond the stall.

Propeller flutter, as described, for example, in references 2 and 3,

can be separated into two main types, classical flutter and stall flutter.

Classical flutter exists at low angles of attack where the flow can be

considered potential and, hence, the aerodynamic forces can be evaluated

by the use of potential-flow theory. Stall flutter is encountered at

high angles of attack where the flow is broken down and potential theory

fails to apply. Classical flutter is generally characterized by a coupling

of the bending and torsion vibration modes; whereas stall flutter occurs

primarily in the torsion mode. The classical-flutter frequency usually
falls between the first-torslon and first-bending frequencies, but the

stall-flutter frequency is nearly the same as the natural first-torsion

frequency of the blade. There is no definite boundary between stall

flutter and classical flutter, and a continuous merging exists. The

natural phenomena involved in this merging are still uncertain although

various attempts have been made to associate them with the behavior of

the static lift curve. Stall-flutter speeds have been found to be lower

than classical-flutter speeds.

The designer is primarily interested in being able to calculate the

propeller-flutter conditions in connection with the possible operating
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conditions. At the present time, no theories are established that can
predict adequately stall-flutter speeds, but sometheories exist that
apply to classical flutter of propellers, (references 4 to 6) and a
brief discussion of these theories is given.

Propellers under normal-flight conditions generally operate with
the blade sections at low angles of attack and would be subject to clas-
sical flutter. Under these operating conditions, the flutter speed is
high, and generally there is an appreciable margin of safety between the
operating speed and the flutter speed; however, during the take-off
period, the propeller blade sections may operate at high angles of attack
and would be subject to stall flutter. Under these operating conditions,
the flutter speed is generally quite low, and the propellers must operate
near the flutter condition where the margin of safety is fairly small.
As a consequence, propellers are required to operate in the stalled con-
dition without dangerous flutter. Since stall flutter is the critical
design condition, and because no adeqoate theories are established for
predicting stall-flutter speeds for propellers, the investigation was
devoted primarily to obtaining information on stall flutter, and, in
particular, the minimumstall-flutter condition.

SYMBOLS

Ach

Ac_

Aah

Aa_

a

b

b r

c

cz

CG

G

GJ

EA

potential nonsteady aerodynamic coefficients

nondimensional elastic axis position referred to semichord

measured from midchord

blade semichord, feet

blade semichord at reference station, feet

sound speed of operating medium, feet per second

section lift coefficient

section center-of-gravity location, percent chord

shear modulus of elasticity, pounds per foot 2

torsional stiffness, pound.feet 2

elastic axis location, percent chord
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fc_

fh

Fh( n )

Fo(n)

gh

gcL

h

H

ICG

k

L

M

m

2

rCG 2

t

V

X

blade first-torsion frequency, cycles per sgcond

blade first-bending frequency, cycles per second

blade-bending-deflection function in terms of tip deflection

blade-torsional-deflection function in terms of tip deflection

structural damping coefficient in bending as used in

reference 7

structural damping coefficient in torsion as used in

reference 7

bending deflection of blade, feet

hub radiusj feet

polar moment of inertia about elastic axis per unit length,

slug-feet 2 per foot

polar moment of inertia about the section center-of-gravity

location per unit length, slug-feet 2 per foot

reduced frequency (b_/V)

blade length, feet

Mach number

blade mass per unit length, slugs per foot

nondimensional radius of gyration of blade section about

elastic axis (IcJmb2 )

nondimensional radius of gyration of blade section about the

section center-of-gravity location (IcG/mb 2)

section thickness, feet

resultant velocity, feet per second

distance from blade root j feet

nondimensional center-of,gravity position measured from

elastic axis in terms of semichord

blade angle, degrees
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e

p

c

¢

(1)

%

mass density of blade material, slugs per cubic foot

nondimensional distance from blade root (X/L)

n°ndimensi°nal distance fr°m center °f r°tati°n (_ +_)+

torsional deflection of blade_ radians

blade mass-density ratio (_Db2/m)

mass density of operating medium, slugs per cubic foot

blade solidity at 0.8L (2b/2_(0.8L + H))

aerodynamic helix angle, degrees

blade circular flutter frequency, radians per second

blade circular first-bending frequency (2_fh_ , radians

per second
\ J

blade circular first-torsion frequency (2_f_, radians
per second

APPARATUS AND TEST METHODS

The apparatus and testing techniques herein described are similar

to those used in the tests of reference 2. The propeller models were

operated in the Langley vacuum sphere in which provisions are made for

operating in air or Freon-12. Freon-12 is a convenient medium for

studying the effects of Mach number because its sound speed is about

500 feet per second at room temperature (reference 8). The propeller

models were rotated by means of a _00-horsepower electric motor (fig. I)

and operated at zero forward velocity except for induced flow. Bending

and torsion oscillations of the blade were recorded by an oscillograph

with the aid of wire strain gages on the blade (see sample record in

fig. 2). The rotational speed was also recorded on the same record,

which, for zero forward velocity, is equivalent to the resultant velocity.

A few total-pressure measurements were obtained in the wake by means of

a survey .rake located about 0.17 propeller diameter behind the propeller
disk.

Flutter runs were generally made in air at i/4, 1/2, and 1.0

atmosphere pressure, but only the data obtained at 1.0 atmosphere are

presented herein, with the exception of data for the studies of density



and Machnumber. Blade angles were usually varied from low lift to
beyond the stalling angle. Flutter was not studied at zero thrust on the
untwisted blades because wake flutter_ such as that described in refer-
ence 3, occurred. During each flutter run, the rotational speed was
grad_ally increased until flutter was observed, at which point a record
was taken. A few attempts were madeto go through the flutter region
at stall, but the flutter was usually too violent to do so.

The effect of Machnumberwas studied by operating in various
mixtures of air and Freon-12 in order to vary the sound speed of the
operating medium. This technique made it possible to obtain a range of
Machnumbersat any given rotational speed. The density was held constant
at about 0.0011 slug/cubic _foot for the various mixtures by varying the
pressure of the operating medium.

The flutter models with their identifying numerical designations
and their significant parameters are listed in table I. The parameters
studied, the range of values covered, and the models used to study them
are described in table II. Information about the blades, which is not
listed in tables I and II_ is described as follows:

(I) The sweptbackmodels were swept from a radial line with the
sweepbackbeginning at the root of the blade; as indicated by the dashed
outline in figure I.

(2) Models la and Ib were successively shortened to change the
length-chord ratio.

(3) The section center-of-gravity location was varied by the use of
different blades with brass inserts cycle-welded in the: blades near the
leading edge so that the section contour remained unaffected.

(4) Model 2 was nearly identical to model la and was twisted
manually to beyond the yield stress, resulting in a set twist of 17° at
the tip, and the angle of twist varied linearly along the span.

RESULTSANDDISCUSSION

Considerations on Method of Presentation

Reference section.- The experimental data are presented showing

the effects of the various parameters studied on the flutter-speed coef-

ficients. The data shown are all referred to the 0.8-blade-length

position which, for propellers having large hub diameters_ would result

in a more representative reference section than would result if a

standard radius location were used.
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Lift coefficient.- The blade angles shown are the blade-angle set-

tings at 0.8 blade length referred to the plane of rotation. The relation

between blade-angle setting and lift coefficient is distorted because of

the effects of induced flow and blade twisting due to centrifugal forces

and aerodynamic forces. Since the designer is primarily concerned with

lift coefficient, some of the wake-survey data were evaluated to yield

lift coefficients. The individual wake surveys are incomplete and, as

a consequence, considerable scatter of the pressure measurements is

present; however, as a matter of interest, a band showing the approxi-

mate values of experimental lift coefficients corresponding to the various

blade-angle settings is shown in figure 3. This figure is applicable

in general to the models having O. 333-foot chord and blade length of
I. 788 feet, with which most of the low Mach number data were obtained.

Flutter-speed coefficient.- The flutter velocity is a function of a

great number of parameters:

= f _°h r 2,L,M,_, _, a,xc_, c/, . .

The ratio V/b_ is designated as the flutter-speed coefficient, the

value of which is dependent on the large number of parameters. This

coefficient is taken at a reference section which is 0.8L for the data

shown herein. The purpose of this investigation is to determine the

effects of many of these parameters on the flutter-speed coefficient.

Before discussing the effect of the parameters studied on this coefficient,

it appears advisable to point out the significance of the flutter-speed

coefficient and its component parts in order to interpret Correctly the

applicability of the data presented herein. For comparison purposes,

assume that a certain flutter-speed coefficient is given, in other words,

V
= Constant

i

For this condition, an increase in the semichord is accompanied by a

proportional increase in the flutter speed provided the torsional

frequency remains constant.

The semichord can be varied without changing the torsional frequency

if the airfoil section is unchanged, as is illust.rated by considering the

first-torsion frequency equation for a uniform beam:

J _ A(2b)t 3 where A

IS_ B_t(2b) 3 where B

is a constant

is a constant

• c0  D !Ag
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Then

.IGA(2b)t3

--
t (1)
2b 2L

For a given value of the flutter-speed coefficient_ increasing the

torsion frequency will be accompanied by a proportional rise in the

flutter velocity if the chord at the reference section is held constant.

It can be seen in equation (i) that two methods of raising the torsional

frequency are increasing the section thickness ratio or decreasing the

blade length. Reference 9 indicates that tapering the blade chord will

also raise the torsional frequency.

Appropriate care should thus be exercised in the interpretation_ in

terms of actual flutter speeds, of results which are presented as flutter-

speed coefficients.

Experimental Data and Discussion

The parameters studied and the figures in which the data are pre-

sented are listed in table II. In the experimental investigation, the

various parameters were isolated where possible, and 3 correspondingly,

the data showing the effects of each parameter are presented in separate

figures. In figures 4 to II, the ordinate is the flutter-speed coeffi-

cient (V/ba_)O.SL and the abscissa is blade angle _0. SL. The param-

eters studied are torsional stiffness (fig. 4), blade taper (fig. 5),

blade twist (fig. 6), length-chord ratio (fig. 7), density of the

operating medium (fig. 8)_ section thickness ratio (fig. 9), sweepback

(fig. lO), and section center-of-gravity location (fig. ll). The effects

of Mach number are shown in figure 12, where flutter-speed coefficients

for a given blade angle are plotted as a function of Mach number. These

parameters are discussed in this section. It is noted that many of the

flutter curves are not completely filled in at low blade angles. For

these cases, the flutter speed has become higher than the maximum safe

operating speed of the blades.

The flutter data given in figures 4 to Ii were obtained under condi-

tions of subcritical flow, that is, with subcritical operating speeds

at the reference section. A significant observation can be made from a

study of the minimum values of the flutter-speed coefficients that occur

for each parameter studied; namely, the lowest value obtained for each

parameter is slightly greater than 1.0. Deviations from this value are

therefore used as a basis of comparison for variations of each parameter.

Parameters havin_ little effect on the minimum flutter-s_eed coeffi-
cients. The parameters that produced no significant increase of the
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minimumflutter-speed coefficients are torsional stiffness, blade taper,
blade twist, length-chord ratio, and density of the operating medium
(figs. 4 to 8). As has been pointed out, the minimumflutter-speed
coefficients maybe unaffected by changing a given parameter, but the
product b_ should be examined to determine the effect of the changes
on the flutter speed.

In contrast to the insignificant effect of torsional stiffness on
the minimumflutter-speed coefficient, a large effect on the flutter-speed
coefficient at low blade angles is indicated by the data in figure 4.
This effect is in accord with the theory for classical flutter.

Section thickness ratio.- Increasing the section thickness ratio

is shown to have some effect on the minimum flutter-speed coefficients by

the data in figure 9. Increase of the section thickness ratio from 6 to

9 percent chord raised the minimum flutter-speed coefficient about

20 percent; however, thick blade sections are associated with greater

reductions in aerodynamic efficiency at transonic speeds.

Sweepback.- The flutter data in figure lO indicate that moderate

amounts of sweepback raised the minimum flutter-speed coefficient about

30 percent. In vlew of the serious structural problems associated with

sweptback propeller blades, this moderate rise in minimum flutter-speed

coefficient does not appear to be of much practical significance.

Section center-of-gravity location.- A pronounced effect of section

center-of-gravity location is indicated by the flutter data in figure ll.

Forward movement of the section center-of-gravlty from 48.5 to 37.4 percent

chord resulted !n a rise of the minimum flutter-speed coefficient of about

60 percent. At 34.0 percent chord, the minimum flutter-speed coefficient

was about 80 percent higher than that for the section center-of-gravity at
48.5 percent chord.

Thls favorable effect of forward movement of the section center-of-

gravity location cannot be utilized to a great extent for solid blades

but, for built-up or hollow sections, some forward movement of the section

center-of-gravity location can be realized. However, forward movement

of the section center-of-gravity location for operation at supersonic

speeds may result in some unfavorable conditions. For example, centri-

fugal force causes the effective elastic axis of propeller blades to

approach the section center-of-gravity location. The aerodynamic center

of pressure Is shifted from the subcritical value of quarter chord to

about midchord at supersonic speeds. If the section _enter of gravity

is located far forward, the aerodynamic pitching moment about the section

center-of-gravity L,cation at supersonic speeds would become negative.

Thls negative pitching moment would then add to, rather than oppose, the

negative pitching moment due to centrifugal force, probably resulting in
excessive torsional deflections.

;



The data in figure ii indicate that forward movement of the section

center-of-gravity location has an extremely great effect on the flutter-

speed coefficients at low blade angles. This effect is to be expected

from classlcal-flutter theory.

Mach number.- The effect of Mach number on the minimum flutter-

speed coefficients is beneficial, as is indicated by the data in

figure 12 for two blades each at a constant blade angle. The blade

angles were chosen to be the angles at which the minimum flutter-speed

coefficients were obtained on each blade, as shown in figure 5. In

figure 12, the coefficients remain nearly constant at about 1.1 to 1.2

up to the vicinity of the critical Mach number at the reference section.

Further increases of Mach number result in a rapid rise of the flutter-

speed coefficients.

It is to be noted in figure 12(b) that flutter was encountered at

several points in the supposedly stable region at a (V/b_)0.8L of 1.7

at a rotational frequency of one-eighth the blade torsional frequency.

The oscillation encountered is very likely caused by strut interference

since there are four struts supporting the motor. Further indication

of interference is supplied by the fact that the range of speeds at

which these oscillations were observed is very narrow.

The significance of the influence of Mach number is better illus-

trated by replotting the experimental flutter curve in figure 12(b) in

the form shown in figure 13. If, in the flutter-speed coefficient,

both the numerator and denominator are divided by the speed of' sound,

the two nondimensional coefficients, Mach number and b_/c are obtained,

both taken at 0.8 blade length. These quantities are used as ordinate

and abscissa in figure 13. Straight lines radiating from the origin

indicate constant flutter-speed coefficients. The value of (b_/c)0.8L

at which the turning point of the flutter curve occurs is considered

to be of fairly general significance. This conclusion is confirmed

by test points obtained from whirl tests of full-scale propellers made

at Wright-Patterson Air Force Base and by different manufacturers.

Since the experimental flutter curve in figure 13 is for the blade angle

at which the minimum flutter-speed coefficient occurred, data at either

lower or higher blade angles should fall above and to the left of the

given instability curve. The portion of the instability curve above the

turning point could not be investigated with the apparatus available

for these studies since the flutter encountered was too severe. A given

propeller would operate on a vertical line designated by a constant value

of (bah/c)0.8L for a fixed speed of sound. It can be seen that, for

blades having low values of (b_h/c)0.8 L and operating at the stall

condition, this line would intersect the flutter curve before supersonic

speeds are reached, and the blades would experience flutter. However,

it may be possible to design satisfactory thin propeller blades



with (ba_/C)O.8L great enough to permit operation into the supersonic
speed range without intersecting the flutter boundary.

Possible Applications

A design criterion.- A tentative design criterion based on these

data can be determined and indicates that propellers having values of

the design parameter (bo_/c)0.8 L greater than 0.50 should be entirely

free of flutter. Many current propellers giving satisfactory service at

tip Mach numbers near 1.0 have values of the design parameter near 0.40.

These propellers may flutter at the stall, but whirl tests established

any flutter which may have been encountered as nondestructive. The value

of 0.50 is used for the criterion presented because thin blades probably

could not endure flutter without the danger of fatigue.

Some blade configurations based on the given design criterion are

shown in figure 14. Two designs of constant thickness ratio are shown,

although structurally this condition may not be too practical. Another

blade having taper in thickness ratio and constant chord, which may be

more acceptable, is also shown. These blade configurations may not be

ideal in some respects, but it appears possible to construct supersonic

type propellers with (Ixo_/c)0.8 L greater than 0.50 and, consequently,

to be completely free of flutter.

A cycling process.- Many of the supersonic type experimental '

propellers being considered at the present time have values of (b_/c)O.8L

of the order of O.I0 to 0.20. It can be seen in figure 13 that such

propellers would flutter if attempts were made to accelerate them to

supersonic speeds at the stall condition. There is a possibility that

these propellers can still be operated at supersonic speeds at stall

without flutter if they are brought up to speed in a manner to be described.

The flutter-speed coefficient at some blade angle lower than the

stalling blade angle would be greater and would appear in figure 13 as

a line from the origin of greater slope. The lower lift coefficient would

raise the critical Mach number, and thus the flutter curve at some

unstalled blade angle should be similar to the dashed curve in figu/re 13.

The experimental flutter curve is extended in the direction it might be

expected to go by the dotted line. A propeller having (b_o_/c)O.SL of

say 0.4 would intersect with the flutter curve if attempts were made to

bring it up to supersonic speeds at 20 ° blade angle; however, it co%id

be accelerated to supersonic speeds at the lower blade angle without

fluttering. Once the propeller is up to speed, the blade angle could

be increased to 20 ° without experiencing flutter since this condition

would be above the upper limit of the flutter boundary. It is necessary,

however, that the operating speed is not reduced enough to intersect with

the flutter curve due to the increased power loading. The reverse of this

operating cycle would have to be followed in stopping the propeller if
flutter is to be avoided.
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This so-called cycling process necessitates close attention to

other parameters which are critical to the low angle-of-attack classical

flutter speeds, and involves primarily torsional stiffness. The data

in figure 4 demonstrate the great effect of torsional stiffness on the

flutter speed at low blade angles. A critical condition for successful

cycling is that the classical-flutter speed is appreciably higher than

the maximum operating speed. This condition exists when (b_u/c)0.8 L

for a given propeller does not intersect the flutter curve for the blade

angles at which the propeller is brought up to speed.

Operation above the flutter boundary.- The flutter at the minimum of

the low-speed flutter curves was generally much less violent than the

flutter at lower blade angles. Attempts were made to operate some of the

test models into the flutter region. At blade angles corresponding to

the minimum of the flutter curve, some of the blades were operated

successfully without dangerous flutter at higher speeds than those

indicated by the flutter curve; however, the density of the operating

medium usually had to be reduced considerably before successful operation

resulted. At lower blade angles, the flutter region could not be

penetrated without the flutter becoming very severe.

Comparison of Experiment with Classical Flutter Theory

As previously discussed, propeller flutter can be separated into

two main types, classical flutter which occurs at low angles of attack

and'stall flutter which is associated with high angles of attack and

which occurs at lower speeds than does classical flutter. Since the

designer is interested in being able to predict flutter speeds, a survey

of existing theoretical techniques is desirable.

At present, no theories are established that can adequately predict

stall-flutter speeds for propellers. However, in order to make effective

use of cycling procedures, knowledge of classical-flutter speeds is

desirable, so some of the available classical propeller-flutter theories

(references 4 to 6) will be discussed briefly. The theory of reference 4

uses a differential equation approach similar to that used in wing-flutter

theory, but, in addition, introduces centrifugal force and moment into the

equations. Reference 5 uses the same attack to the problem, but with

more simplifying assumptions which eases numerical application somewhat.

The theory of reference 6 utilizes known wing-flutter theory in a manner

similar to references 4 and 5. The effect of centrifugal force is included

in the bending mode, but neglected in the torsion mode. Classical two-

dimensional oscillating air forces are used in all three theories, and

reference 6 has provisions for using either compressible or incompressible

values. Some computations have been made in order to compare theoretical

with experimental results presented herein. The theories referred to are

quite difficult to adapt to numerical calculations and generally require

considerable computing time. The theory of reference 5, however, with

certain modifications, was used to compute one case.
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The theory of reference 5 was developed for application to helicopter

rotors with the assumption that the root of the blade is located at the

center of rotation. This assumption does not lead to great errors when

applied to helicopters because the hub diameter is generally small with

respect to the rotor diameter. Since propellers have much larger hubs 3

the theory of reference 5 had to be modified to make use of a hub radius,

which may be as much as 30 percent of the propeller radius. The modified

theory was used to compute the classical-flutter speed of model 4, and
the result is shown in column (1) of table III.

Since the existing propeller-flutter theories are quite cumbersome,

a classical wing-flutter theory (reference lO) was modified to apply to

propellers. This modification was accomplished by allowing the aerodynamic

forces to vary along the blade and applying centrifugal-force corrections

to the static first-bending and first-torsion frequencies. This method

of analysis is discussed in the appendix. The dynamic deflection curves
were assumed to be the same as for the static case. This method was

used to compute classical-flutter speeds for three of the models used in

the current tests, and the results are shown in table III column (2).

A comparison of theoretical values in column (2) of table III with

experimental results in columns (5) and (6) of table III shows that

theoretical predictions are slightly lower than the experimental classical-

flutter speeds, but are possibly adequate for predicting classical flutter;

however, the theoretical values are considerably higher than the experi-

mental stall flutter speeds, which indicate that classical theory, using

oscillating air forces derived from potential flow 3 is wholly inadequate

for predicting stall-flutter speeds.

It would be less time consuming to compute the classical-flutter

speed of a given propeller if two-dimensional wing-flutter theory, rather

than the more tedious propeller-flutter theory, could be used. This could

be done if a representative section on the propeller blade were established

at which a flutter speed computed by two-dimensional theory could be

applied. Calculations by the wing-flutter theory of reference 7 were made

on the three models used to compare theory and experiment, and the results

are shown in column (3), table III. On the basis of comparing the two-

dimensional calculations with the propeller calculations in column (2),

theoretically derived representative sections are determined and are

listed in column (4). These results show that a value of 75 percent blade

length may be adequate for the representative section.
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C 0NC LUS IONS

The experimental propeller-flutter data for the various parameters

investigated indicate the following conclusions:

i. The minimum flutter-speed coefficients obtained at low Mach

numbers were slightly greater than 1.0.

2. Forward movement of the section center-of-gravity location,

increasing thickness ratio, sweepback, and Mach number at supercritical

speeds were the only parameters studied that raised the minimum flutter-

speed coefficients appreciably above 1.0. Section center-of-gravity

location and Mach number appeared to show the most significant increases.

3. The beneficial effect of Mach number indicates a design parameter

which is designated by (ba_/c)0.8 L. It appears that a tentative design

criterion can be given which states that propeller blades having

(ba_/c) 0.8 L greater than 0.50 should be entirely free of flutter.

4. Practical supersonic propellers having thin blade sections may

not satisfy the criterion. A proper cycling procedure would then

probably be necessary whereby the propeller could be accelerated to

supersonic speeds at low blade angles. To do this successfully, the

classical-flutter speed must be appreciably higher than the desired

operating speed. Once the propeller is up to speed, the blade angle can

be increased to the desired loading conditions without encountering
flutter.

Langley Aeronautical Laboratory

National Advisory Committee for Aeronautics

Langley Field, Va.
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APPENDIX

METHODOFANALYSIS

The classical wing-flutter theory of reference I0 was modified for
application to propellers in the following manner.

The equations of equilibrium in the torsional and bending degrees
of freedom are written in reference lO, neglecting the sweepbackterms,
as

_hA + _aB2)_obr3a>2 = 0 (i)

where

_2 + eZ2)'_,_br_'_2= 0 (2)

L rl'O/b\2 F '1 2

do t r) (3a)

B2=L \_r/ \-_-- Ac0 [Fh(h)] [Fe(n)]dh (3b)

D2 = ___Lbr_01" 0( b--_3_/xc_-\br/\ K: Ash) [ Fh( _])J [Fe( rl)] drl (3c)
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1.0 b 4
(3_)

The air forces are given by

2G 2F
Ach = -i - _ + i --

k k

Acc _ = k-_ " _ k2 -

1_ a2 . + + - a --+
= S

The quantities F and G are the real and imaginary parts,

respectively, of the complex function C = C(k) = F(k) + iG(k) which is

associated with the wake and was developed by Theodorsen in reference ll.

The border-line condition of flutter separating the damped and

undamped oscillations is determined by a nontrivial solution of the

homogeneous equations (i) and (2). The flutter condition is solved by

0NFIDE _f IAL



meansof the vanishing determinant of the coefficients of the bending
and torsional motions,

A2D2
= 0

E2
(4)

This wing-flutter theory was a_lied to propellers by integrating
the air forces over the blade as follows. For blades with constant

chord, the velocity and hence 1/k varies directly with radius; there-

fore, the air forces must be integr_ed with respect to h' which

H+X
equals . Since the elements of the determinant are obtained by

H+L

integrating with respect to _, it is advis_le to set down the air-force

terms in such a form th_ they are also functions of _ instead of _'.

_, = E + x (5a)
H+L

= x (5b)
L

Therefore,

_' = _ (5c)
II+L

At this point it appears most convenient to set up the integrals

involving the alr-force terms in the form of su_nations for use in a

solution by strip analysis.

In A2, the term

',c,E,,I,



becomes

0

(6)

By taking the reference section at the tip, i/k at any point along
b

the blade is equal to __l q. _zr which would correspond to the resultant

kti p b

velocity for the condition of zero forward velocity. In forward flight

the resultant velocity along the blade would not vary linearly with radius,

and would be a function also of the forward velocity. For zero forward

velocity, 1/k according to equation (5c) becomes

! = I H + nL b__r (7)

k kti p H + L b

Equation (6) can then be written as follows:

1.0 b 2 2

0

-2G + 2iF b H + L

It should be noted that the aerodynamic coefficients F and G are

related to the local values of 1/k and thus vary along the blade radius

also. For the purpose of strip analysis, q must be measured to the

center of each strip.

Continuing the same procedure for each of the four determinant

elements, equations (3), results in the following equations. Only the

parts containing the air-force terms are shown as summations, because

the mass terms can be integrated mathematically for untapered blades.

A2 _ [ I _ (_)2(i I_ i gh_ _ Z 1 _ 0

1.0

Ih(_ I + (-2G + 2iF).br e + n_ i AN
b H+L

0

(8a)



1.0 i_._r_ XcL

L

0

H+ qL _Ipl_H + L kti
Aq

+

(Sb)

D2 = L b 3 xc_h(q e(h dq -

(8c)

E2 = L - \ + ig

1.0
0

F] br2G + i( 1 - a)-(_- a2)2i b H+L k

(8_)

_,.._ J ,T%.i_, ,-'_ ,.._-_.
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Equations (8) are substituted into equation (4) and solved with the

final result in the form of V/ba_ as a function of mh/_. The effect

of centrifugal force on the static bending frequency can be computed as

shown in reference 12. Centrifugal force also affects the static torsion

frequency, and, for the present case, the same relationship as that used

to correct the bending frequency was used as a first approximation for

the corrected torsion frequency. The corrected ah/_ _ ratio can be

computed and plotted on the same graph with the flutter calculation. The

intersection of the two curves yields the theoretical flutter-speed

coefficient for the given propeller.

The indicated theoretical flutter-speed coefficient is based on the

torsional frequency corrected for centrifugal force. In order to compare

theory with experiment, the theoretical flutter-speed coefficient should

be raised by the ratio of the corrected torsional frequency to the static

torsional frequency.

Mode shapes of uniform untapered beams are presented in reference 8.

A method of obtaining mode shapes for nonuniform beams and beams with

concentrated masses is presented in reference 13.

kh]31
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TABLE II

SCOPE OF PROPELLER-FLUTTER INVESTIGATIONS

Parameters

studied

Torsional stiffness

Taper ratio

Blade twist (at tip)

Length-chord ratio

Density of operating
medium

Section thickness ratio

Sweepback

Section center-of-

gravity location

Mach number

Blade angle at 0.8L

Range of
values

Models used

for studies

Figures in which

parameters are

evaluated

4

5

6

8

12 to i01 ib-ft 2

0.50 to 1.0

0° and 17 °

2.6 to 5.3

0.0006 to 0.0024

slug/cu ft

3 to 9 percent la,3a,3b,4,13

chord

0° to 20 ° 4,9,10,11

34.0 to 4,7,8

48.5 percent

chord

Oto 1.3

5° to 35 °

la,3a,3b,4

4,5,6,12

la_2

la, lb,lc,3a,

3b,3c,3d

All

5,6

All

9

lO

ll

12 and 13

3 to 13
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Propeller model_ _

otlr

___o_u,L_ _ _o_o_._

81de view

_Unswept blade

- 8weptbaok blade

Front view

Figure i.- Schematic diagram of propeller assembly.
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Figure 3.- Relation between lift coefficient and blade-angle setting.
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Figure 4.- Effect of torsional Stiffness on flutter-speed coefficient.
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Figure 5.- Effect of blade taper on flutter-speed coefficient.
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Model
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Length-chord
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2.6 ii_
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(a) Models la, ib, and Ic.

Figure 7.- Effect of length-chord ratio on flutter-speed coefficient.
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Figure 7.- Concluded.
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Figure 8.- Effect of density of the operating medium on flutter-speed

coefficient, model la.
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Figure 9.- Effect of section thickness ratio on flutter-speed coefficient.
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Figure i0.- Effect of sweepback on flutter-speed coefficient.
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Figure ii.- Effect of section center-of-gravity location on flutter-speed
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(a) Model 5, _0.8L = 25o"

Figure 12.- Effect of Mach number on flutter-speed coefficient.
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Figure 13.- Effect of Mach number on propeller flutter; model 6.

_ co___._



4o

±

I
L I

(a) _ : 0.o5.

NACA RM LSOLI2b

T
r--
_o

i
L

t
(b) FS: o.o5.

/
/
/
/
/
/

T

i
L

(o>Atroot_ : o.o_:.ttip_ : 0.o3.

Figure 14.- Some propeller-blade configurations which satisfy the design

criterion of \_/_ah)0.8 L = 0.50. Material is aluminum alloy.

NACA-Langley - 1-31-61 - 375


